
Pragmatic vs. Systematic
Engineering

Christian Berger
Stefan Biffl

Franck Fleurey
Scott Hissam

Christine Julien
Filip Krikava

and



pragmatic, 
incremental,
palatable

systematic,
formal,
model-driven

“traditional”
views of software

engineering

current state
of the practice

for CPS

Conceptual Summary



pragmatic, 
incremental,
palatable

systematic,
formal,
model-driven

“mission critical”
systems

“maker” systems,
Internet of Things

Conceptual Summary



The “Pure” Perspectives

• In “traditional” software engineering, we usually 
have the goal of abstraction

– CPS may require balancing this goal with meeting domain 
experts “at their level”

• From a “purist” perspective, we need:

– A clear, complete high-level description and a “compiler” 
that can generate correct code

– Domain specific languages offer a first step 
• i.e., they make it possible to specify a solution and generate code 

automatically

– But generated code is often “not efficient enough”



The Mismatch

• There is a key interdisciplinary problem
– i.e., a “mismatch” in the languages spoken by the software 

engineers and the domain experts

• Often what happens is the domain experts build a 
system
– When they’re desperate, they call in a software engineer 

to try to find the problem

– The software engineer has to become immersed in the 
domain

• Recent anecdotal efforts hint at interdisciplinary teams 
that start with domain experts and software engineers



A Continuum of Systems

• There are different categories of systems

– Mission critical ones may require a rigorous 
approach from the outset

– However, more “user” level systems (e.g., in the 
IoT, “maker” systems, etc.) may not 

• Systems are almost universally made up of 
components

– There is a danger in the components being used 
for something unintended later



Some Directions

• Can we leverage system “smarts” to aid in high 
quality systems?

– Maybe it’s ok for the system to have flaws, as long as it has 
the smarts necessary to recover or repair itself

• Can we derive models that are inherently 
composable?

– We can then model components of a CPS that it is 
necessary to model and perhaps not others

– Individual models may then be more tractable

– “Connectors” across models could account for consistency, 
timing, security, etc.



Some More Directions

• We need to improve design-time techniques 
and make them accessible to domain experts

– However, we may also want to do some of the 
checking at run-time using real world data

– Design-time checking will necessarily be more 
open



A Caveat

• We are not going to replace the domain experts

– The domain expert needs to be able to rely on tools to 
introspect expressively

• Provable correctness (even at the component level)

• Testing in the your environment (i.e., a well-defined test 
suite) – relationship to “certifiable” components

• Smartness and self-adaptation

– How do we make the domain experts trust the tools?

• Time? Mixed teams? Technology transfer?

• Evidence


